Novel synthesis of O-alkylguanine containing oligodeoxyribonucleotides as substrates for the human DNA repair protein, O-methylguanine DNA methyltransferase (MGMT)

نویسندگان

  • Takayuki Shibata
  • Nicola Glynn
  • T. Brian H. McMurry
  • R. Stanley McElhinney
  • Geoffrey P. Margison
  • David M. Williams
چکیده

The human DNA repair protein O-methylguanine DNA methyltransferase (MGMT) dealkylates mutagenic O-alkylguanine lesions within DNA in an irreversible reaction which results in inactivation of the protein. MGMT also provides resistance of tumours to alkylating agents used in cancer chemotherapy and its inactivation is therefore of particular clinical importance. We describe a post-DNA synthesis strategy which exploits the novel, modified base 2-amino-6-methylsulfonylpurine and allows access for the first time to a wide variety of oligodeoxyribonucleotides (ODNs) containing Oalkylguanines. One such ODN containing O-(4bromothenyl)guanine is the most potent inactivator described to date with an IC50 of 0.1 nM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel synthesis of O6-alkylguanine containing oligodeoxyribonucleotides as substrates for the human DNA repair protein, O6-methylguanine DNA methyltransferase (MGMT)

The human DNA repair protein O6-methylguanine DNA methyltransferase (MGMT) dealkylates mutagenic O6-alkylguanine lesions within DNA in an irreversible reaction which results in inactivation of the protein. MGMT also provides resistance of tumours to alkylating agents used in cancer chemotherapy and its inactivation is therefore of particular clinical importance. We describe a post-DNA synthesis...

متن کامل

The nitrosated bile acid DNA lesion O6-carboxymethylguanine is a substrate for the human DNA repair protein O6-methylguanine-DNA methyltransferase

The consumption of red meat is a risk factor in human colorectal cancer (CRC). One hypothesis is that red meat facilitates the nitrosation of bile acid conjugates and amino acids, which rapidly convert to DNA-damaging carcinogens. Indeed, the toxic and mutagenic DNA adduct O(6)-carboxymethylguanine (O(6)-CMG) is frequently present in human DNA, increases in abundance in people with high levels ...

متن کامل

Inhibition of O6-methylguanine-DNA methyltransferase by an alkyltransferase-like protein from Escherichia coli

The alkyltransferase-like (ATL) proteins contain primary sequence motifs resembling those found in DNA repair O(6)-alkylguanine-DNA alkyltransferase proteins. However, in the putative active site of ATL proteins, a tryptophan (W(83)) residue replaces the cysteine at the known active site of alkyltransferases. The Escherichia coli atl gene was expressed as a fusion protein and purified. Neither ...

متن کامل

Reaction of O6-benzylguanine-resistant mutants of human O6-alkylguanine-DNA alkyltransferase with O6-benzylguanine in oligodeoxyribonucleotides.

Inactivation of the human DNA repair protein, O6-alkylguanine-DNA alkyltransferase (AGT), by O6-benzylguanine renders tumor cells susceptible to killing by alkylating agents. AGT mutants resistant to O6-benzylguanine can be made by converting Pro140 to an alanine (P140A) or Gly156 to an alanine (G156A). These mutations had a much smaller effect on the reaction with O6-benzylguanine when it was ...

متن کامل

A novel fluorometric oligonucleotide assay to measure O( 6)-methylguanine DNA methyltransferase, methylpurine DNA glycosylase, 8-oxoguanine DNA glycosylase and abasic endonuclease activities: DNA repair status in human breast carcinoma cells overexpressing methylpurine DNA glycosylase.

DNA repair status plays a major role in mutagenesis, carcinogenesis and resistance to genotoxic agents. Because DNA repair processes involve multiple enzymatic steps, understanding cellular DNA repair status has required several assay procedures. We have developed a novel in vitro assay that allows quantitative measurement of alkylation repair via O(6)-methylguanine DNA methyltransferase (MGMT)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006